5. Nuclear physics

5.2 Radioactivity

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer				
(a)(i)	α / alpha		B2		
	β / beta				
	γ/gamma				
(a)(ii)	α / alpha		B1		
(a)(iii)	γ/gamma		B1		
(b)(i)	1/8 OR 0.125		A2		
	idea of 3 half-lives e.g. $6+6+6$	idea of 3 half-lives e.g. 6 + 6 + 6			
(b)(ii)	type of particle	number	B2		
	electron	43			
	neutron	56			
	proton	43			

Q2.

- 1				4
	(b)	(beta-particles are fast-moving / negatively charged) electrons	B1	
	(c)	(29 × 3 =) 87 years	A2	
		idea of 3 <u>half-lives</u> OR 16 ÷ 2³ (= 2)	(C1)	

Q3.

Question	Answer	Mark
(a)(i)	both have 92 (protons) OR same (number of protons)	B1
(a)(ii)	U-235 has (3) fewer neutrons OR U-238 has (3) more neutrons OR U-235 has 143 and U-238 has 146 neutrons	B1
(b)	(2 × 24 =) 48 (minutes)	А3
	(change in mass takes place over / decay takes) 2 half-lives	(C2)
	$16 \rightarrow 8(.0) \rightarrow 4(.0)$ OR $16 \times \frac{1}{2} \times \frac{1}{2}$ (= 4(.0))	(C1)

Q4.

(b)	point at (20, 2.0) plotted correctly	B1	
	point at (30, 1.0) plotted correctly	B1	
	points joined by a (smooth) curve to about 30 days	B1	

Q5.

(b)(i)	A and B and D	B1	
(b)(ii)	A	В1	
(c)	2 (h)	A2	
	3 half lives	(C1)	

Q6.

Question		Answer Mai				
(a)	name of particle	number of particles	position of particle	relative charge of particle	B4	
	electron	6	orbiting / outside (nucleus)	-1 OR minus one		
	neutron	8	in the nucleus	0 OR zero OR none OR neutral		
	proton	6	(in the) nucleus	+1 (plus one)		
	1 mark for each correct column					
(b)	(2 × 5700 =) 11 400 (years)	(2 × 5700 =) 11 400 (years)				
	(change in mass takes place	ange in mass takes place over / decay takes) 2 half-lives (C2)				
	8(.00) → 4(.00) → 2.(00) O	R $8(.00) \times \frac{1}{2} \times \frac{1}{2} = 2.(00)$			(C1)	

Q7.

(b)	(negatively charged) electron	B1	
	electromagnetic (wave / ray)	B1	
(c)	0.2(0) (mg)	А3	
	1.6 × ½ × ½ × ½ OR 1.6 ÷ 8 OR 1.6, 0.8, 0.4	(C2)	
	24(.0) ÷ 8(.0) OR idea of 3 half-lives	(C1)	

Q8.

Question			Answer		Marks
(a)	4 correct ticks for 3 ma 2 or 3 correct ticks for 1 correct tick for 1 mar	2 marks			В3
	characteristic		type of radiation		
		α (alpha)-particles	β (beta)-particles	γ (gamma)-rays	
	electromagnetic wave			(✔)	
	least ionising			✓	
	least penetrating	~			
	a helium nucleus	✓			
	negatively charged		✓		
(b)	241				B1
	(Pu)				
	94				B1
(c)	2(.0) × 10 ¹² (atoms)				А3
	8(.0) (× 10 ¹²)/4 OR 8(.0)	$(\times 10^{12}) \times \frac{1}{2} \times \frac{1}{2}$			C2
	28 years = 2 half-lives O	R 28 years/14 = 2 (h	alf-lives)		C1

Q9.

(b)	electron	B1
(c)	17 400	A2
	16000 – 8000 – 4000 – 2000 OR 3 half lives	(C1)

Q10.

Question	Answer	Marks
(a)	alpha (particles) not emitted	M1
	any one from idea that count rate for paper is similar to count rate for air OR if alpha emitted count rate for paper would decrease/be less (than 480)	A1
(b)	gamma (rays) emitted	M1
	any one from idea that count rate for (10 mm) lead is less (than count rate for (2 mm) aluminium/air/paper owtte) OR (most/some of) gamma (rays) are absorbed by lead	A1

Q11.

Question	Answer	Marks	
(a)	²⁴¹ ₉₅ (Am)	B1	
		B1	
(b)	430 (years)	A2	
	(decrease in activity from) 16 000 (counts/min) to 8000 (counts/min)	(C1)	

Q12.

Question			Answer			Marks
(a)			ty	pe of radiation		В3
		property	α-particles	β-particles	γ-rays	
		largest mass	✓			
		most ionising	✓			
		most penetrating			✓	
		negatively charged		✓		
		greatest speed			✓	
(b)	idea of 3 half-lives OR 45 ÷ 15				<u>'</u>	C1
	80 ÷ 8 OR 80 × ½ × ½ × ½					C1
	10 (mg)					A1

Q13.

Question	Answer	Marks
(a)(i)	gamma OR	B1
(a)(ii)	alpha OR	B1
(b)	same atomic number / Z / number of protons	B1
	different nucleon number / A / number of neutrons	B1
(c)	idea of 2 half-lives	C1
	1/4	A1

Q14.

Question	Answer	Marks
(a)(i)	uranium-235 AND uranium-238	B1
(a)(ii)	plutonium(-238) AND uranium-238	B1
(a)(iii)	plutonium(-238)	B1
(b)	idea of 3 half-lives OR 72 ÷ 24	B1
	40 ÷ 8	C1
	5(.0) (mg)	A1

Q15.

(b)(i)	(from June 2004 to June 2014 =) 10 (years)	B1
	(decrease in activity from) 80 000 (Bq) to 20 000 (Bq) takes 2 half-lives	B1
	10 ÷ 2 = (5 years)	B1
(b)(ii)	(decrease in activity from) 20 000 (Bq) to 10 000 (Bq) is one half-life	C1
	so half the time difference = 5 years OR 2019	A1

Q16.

Questio	Answer	Marks
(b)	(four days is) 2 half-lives	C1
	activity is 2400 ÷ 4	C1
	600 (counts / minute)	A1

Q17.

Question	Answer	Marks
(a)	rocks, buildings, (natural) radon, air, cosmic rays, sun, food, drink	B1
(b)(i)	evidence of using graph	C1
	TWO pairs of coordinates seen	C1
	7.5 (min)	A1
(b)(ii)	Use a lead(-lined) box / container	B1

Q18.

Question	Answer	Marks
(a)	beta/β AND gamma/γ	B1
(b)	(137 – 56 =) 81	B1
(c)	idea of three half-lives	C1
	36 ÷ 8	C1
	4.5 (mg)	A1

Q19.

(b)	changes to a different element/gains a proton	B1
(c)(i)	lead	B1
(c)(ii)	any one from: minimise time for handling maximise distance from source use of shielding prevent contamination	B1

Q20.

Question	Answer	Marks
(a)	2.5 (minutes)	B1
(b)	any answer above 1246 (counts/s), e.g. 1247	B1
(c)	helium nucleus OR 2 protons AND 2 neutrons	B1
	2. strongly (ionising)	B1
	3. weakly (penetrating)	B1

Q21.

Question	Answer	Marks
(a)(i)	nucleon number OR mass number	B1
(a)(ii)	proton number OR atomic number	B1
(b)(i)	selected count rate halved	B1
	two pairs of co-ordinates clearly indicated	B1
	(half-life =) 4 (minutes)	B1
(b)(ii)	shallower curve drawn	B1

Q22.

Question	Answer	Marks
(a)(i)	unpredictable owtte	B1
(b)	From top to bottom of table alpha: HIGH LOW	B1
	beta: MEDIUM MEDIUM	B1
	gamma: LOW HIGH	B1
(c)	protons	B1
	neutrons	B1
	2 of each drawn/labelled AND no electrons	B1

Q23.

(b)	Any three from: (nucleus has) same number protons or same atomic / proton number	В3
	same charge different mass	
	different nucleon number different number of neutrons	
(c)	idea of 3 half-lives Or $8.0 \rightarrow 4.0 \rightarrow 2.0 \rightarrow 1.0$	C1
	5700 × 3	C1
	17 100 (years)	A1

Q24.

.(b)(i)	any 2 from: different forms of same element same number of protons different number of neutrons / nucleons	B2	
(b)(ii)	value from graph selected e.g. 16 000	C1	
	half the original value selected or stated e.g. 8000	C1	
	12.3 or 12.4 (years)	A1	

Q25.

Question	Answer	Marks
(a)(i)	lpha or alpha	1
(a)(ii)	α or alpha	1
(b)(i)	beta or β	1
	beta emission would be affected by the thickness of the metal owtte	1
(b)(ii)	(counter) reading higher	1
(b)(iii)	rollers move apart/provide less force/pressure owtte	1
(b)(iv)	38	1

Q26.

	1	
(b)(i)	18 / 6 or 3 half lives seen or implied	1
	1/8 or division by 8	1
	1.5 (mg)	1
(b)(ii)	any two from: high energy/fast-moving electron/negatively charged particle about 2000 times smaller than a proton/neutron	2
(b)(iii)	any one from: new element formed neutron becomes/turns into a proton Z/proton number increases by one neutron number decreases by one	1

Paper 4

Q27.

(c)(i)	electron	B1
(c)(ii)	a neutron changes into a proton (and electron)	B1
(d)	17 000 years	А3
	$1.2 \times 10^{11}/9.6 \times 10^{11}$ OR 1 / 8 OR one halving seen e.g. $9.6 \times 10^{11} \div 2$	C1
	3 (half-lives) OR 1/8 × 9.6 × 10 ¹¹ = 1.2 × 10 ¹¹	C1

Q28.

Question	Answer	Marks
(a)	(nucleus of carbon-14 contains) more neutrons OR (nucleus of) carbon-12 has fewer neutrons	B1
	any one from:	B1
	(atom / nucleus of carbon-14) is heavier	
	(atom / nucleus of carbon-14 is) not stable	
	(nucleus of carbon-14 contains) two more neutrons	
(b)(i)	Every 5700 years the (remaining) carbon-14 decreases by half OR amount of C-14 halved every half life	A2
	amount of carbon-14 halves in 5700 years OR amount of carbon-14 decreases at a decreasing rate (with time)	C1
(b)(ii)	11 000 (years ago)	А3
	2 × half-life have elapsed	C1
	25% of C-14 at time of death is still present in tree OR 75% of C-14 has decayed.	C1
(c)	medical tracers OR medical imaging OR medical diagnosis	B1
	any one from:	B1
	keep dose low	
	doesn't stay in body too long	
	less damage (to body) OR less harmful (to humans)	

Q29.

Question	Answer	Marks
(a)(i)		B1
	²⁰⁸ Pb	B1
		B1
(a)(ii)	γ -emission / it consists of waves / rays OR γ -emission has no mass / charge	В1
(a)(iii)	(it contains) too many / excess of neutrons OR (nucleus is) too heavy	B1
(b)	smooth curve (through magnetic field) AND labelled β	B1
	path towards bottom of page AND no upward component AND labelled β	B1
	(continuation of beam along) horizontal line through magnetic field AND labelled γ	B1

Q30.

Question	Answer	Marks
(a)(i)	any two from: reduce exposure time AND low(er) amount of radiation absorbed increase distance between source and hospital staff AND lower amount of radiation reaches staff use of shielding (e.g. walls, lead etc.) AND radiation absorbed by shielding / cannot penetrate through shielding use isotopes with short half-life AND lower amount of radiation emitted from patient / radiation (above background) emitted for a shorter period of time use of film badge / dosimeter AND manage individuals exposure owtte restrict pregnant staff / patient in hospital AND radiation may harm foetus owtte	B2
(a)(ii)	high ionisation (within body)	B1
	radiation would not reach detector (outside body)	B1
(b)	$^{24}_{11}$ Na $\rightarrow ^{24}_{12}$ Mg + $^{0}_{-1}$ β	
	24Na on LHS	B1
	_1β on RHS	B1
	²⁴ Mg on RHS	B1

Q31.

Question	Answer	Marks
(a)(i)	(americium-241 has) one neutron fewer (in the nucleus)	B1
(a)(ii)	(different) number of protons (in nucleus)	B1
	(different) number of neutrons (in nucleus)	B1
(b)(i)	$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{a}$	А3
	any two from:	C2
	₉₅ Am ²³⁷ Np ⁴ ₂ a	
(b)(ii)	$(\alpha$ -particles have) more kinetic energy (than β -particles)	B1
	(α-particles have) more charge (than β-particles)	B1
(b)(iii)	Low(er) (initial) activity OR Few emissions per unit time	M1
	so smoke detectors are not hazardous to humans OR so disposal of old detectors is cheap / easy	A1

Q32.

Question	Answer	Marks
(a)	(number of neutrons =) 7	B1
	any one from: number of electrons = number of protons white dots are protons / there are 5 protons grey dots are neutrons (number of neutrons) = 12 – 5	B1
(b)(i)	(X2 has) one more proton more and one fewer neutron (than X1) OR (X2 has) 6 protons and 6 neutrons	A2
	(X2 has) one neutron fewer / one more proton (than X1) OR (X2 has) 6 protons / 6 neutrons	C1
(b)(ii)	(X2) has fewer (excess) neutrons (in its nucleus) ORA	B1
(c)(i)	time (taken)	M1
	for number of (radioactive) nuclei / atoms (in a sample of X1) to halve OR for rate of decay to halve	A1
(c)(ii)	large number of particles produced in short time OR high / large decay rate OR high dose (of radiation) in short time	B1

Q33.

Question	Answer	Marks
(a)	α – no. of neutrons 2	B1
	β – no. of protons 0 and charge –1.6 \times 10 ⁻¹⁹	B1
	γ – no. of neutrons 0 and charge 0 and (very) thick concrete / thick lead	B1
(b)	(the nucleus has) one less neutron and one more proton	B1
(c)	95 (counts / min)	A4
	initial count rate due to source = 550 – 30 (counts / min) OR 520 seen	C1
	(75 min =) 3 half-lives OR (count rate =) 1/8 (of initial count rate)	C1
	final count rate due to source = (520 / 8 =) 65	C1
(d)	any two from: Iimit time of exposure store sources in lead boxes keep distance from sources avoid contact OR use tongs OR wear gloves	B2

Q34.

Question	Answer	Marks
(a)	they all have the same number of neutrons / nucleons or they are all identical	B1
(b)(i)		B2
	(number of protons =) 80	B1
	(number of neutrons =) 118	B1
_(b)(ii)	19 counts / minute ≤ count rate ≤ 21counts / minute	B1
(b)(iii)	$2.4 \text{ days} \leqslant \tau \leqslant 2.9 \text{ days}$	A4
	count rate from line – background count e.g. 390 – 20	C1
	answer from first C1 mark divided by 2 e.g. 370 / 2 or 185	C1
	background count + answer from second C1 mark e.g. 20 + 370 / 2 or 20 + 185 or 205	C1

Q35.

Question	Answer	Marks
(a)(i)	(proton number) 2	B1
	(nucleon number) 4	B1
(a)(ii)	3.2 × 10 ⁻¹⁹ (C)	B1
(b)	$^{230}_{88}$ Ra $\rightarrow ^{230}_{89}$ Ac + $^{0}_{-1}$ β	А3
	any two from: nucleon numbers 230 on left AND 230 on right nucleon number 88 on left AND Ac and proton number 89 on right - 0	C2
(c)	(mass =) 1.2 × 10 ⁻¹² g	A2
	3 half-lives OR 9.6 × 10 ⁻¹² /8 OR 9.6 × 10 ⁻¹² /2 ³	C1

Q36.

Question	Answer	Marks
(a)(i)	top: travels to left	B1
	middle: deflected down AND still travels to right	B1
	bottom: straight on	B1
(a)(ii)	plus OR positive OR +	B1
(b)	79 (electrons)	B1
	119 (neutrons)	B1
	79 (protons)	B1

Q37.

(b)	135 on left 55	B1
	Cs on left	B1
	135 56 Ba on right	B1
	$+\beta$ on right OR $-\beta$ on left	B1

Q38.

Question	Answer	Marks
(a)(i)	α in Box 4 / towards bottom of page	B1
	γ in Box 3 / no deflection	B1
(a)(ii)	α in Box 1 / into page	B1
	γ in Box 3 / no deflection	B1

Q39.

Question	Answer	Marks
(a)(i)	(initial CR adjusted for background = 220 – 20 =) 200	C1
	(after 1 half-life CR adjusted for background =) 100 OR (detected CR) = 120	C1
	2.4 min	A1
(a)(ii)	12 or 13	C1
	(12 + 20 =) 32 OR (13 + 20 =) 33	A1
(b)	incorrect	B1
	container / (2 mm) plastic does not absorb / stop / block / is penetrated by γ	B1
	good extra detail e.g. any one of:	B1

Q40.

Question	Answer	Marks
(a)	radiation that is always present or due to environment or in everyday life	B1
	soil / rocks / earth / cosmic rays / space / Sun / weapons testing / radon / nuclear waste	B1
(b)(i)	alpha-emission (only)	B1
	alpha-particles do not penetrate (two sheets of) paper \mathbf{or} β -particles \mathbf{and} γ -rays pass through (two sheets of) paper	B1
(b)(ii)	$^{208}_{84}\text{Po} \rightarrow {}^{4}_{2}\alpha / {}^{4}_{2}\text{He}$	B1
	²⁰⁴ Pb or ₈₂ Pb	C1
	²⁰⁴ ₈₂ Pb	A1

Q41.

(b)(i)	longer half-life – radioactive substance active in body for a long time	B1
	shorter half-life – might be insufficient time for investigation OR it takes time / hours for the tracer to spread round the body	B1
(b)(ii)	proton numbers balance for equation expected answer : $42\text{Mo} \rightarrow 43\text{Tc} + -1\beta$	B1
	all nucleon numbers correct	B1
	correct proton and nucleon number for β-particle	B1
(b)(iii)	any suitable use, e.g. sterilisation of equipment, treatment of cancer, gamma for diagnosis, radiotherapy NOT any link to X-rays	B1

Q42.

Question	Answer	Marks
(a)(i)	any two from soil/rocks/buildings/the Earth cosmic rays/space the Sun medical sources food or drink air/radon	B2
(a)(ii)	random (variation of background radiation / radioactivity)	B1
(b)	160 and 10 (counts/min)	C1
	(160 / 10=) 16	C1
	4 half-lives	A1
	(24/4 =) 6 days	B1
(c)	2 correct lines	B1
	4 correct lines	B1
	6 correct lines	B1